View Attempt 6 of unlimited

Title: DME08-test7. Suunatud graafid
Started: Sunday 30 March 2008 19:08
Submitted: Sunday 30 March 2008 19:39
Time spent: 00:31:21
Total score: 18/20 = 90% Total score adjusted by 0.0 Maximum possible score: 20
 

1. Jump to next question.

   
Millise suurima väärtuse saab omandada tipu sisendaste 16-tipulises suunatud graafis?
  Student Response
Answer: 15  
Score: 2/2
 

2. Jump to next question.

   
Antud on graaf

Märkida alljärgnevatest kõik graafid, mis on selle graafiga isomorfsed.

  Student Response Feedback
Student Response  
 
Student Response  
 
Score: 2/2
 

3. Jump to next question.

   
Olgu suunatud graafil tipud A, B, C, D, E, F, G ning kaared AE, BC, EF, DB, GF, BE, DA, EG, CD ja GA. Märkida tipud, millega tipp F kuulub samasse sidusasse komponenti tugeva sidususe mõttes.
  Student Response Feedback
A  
B  
C  
D  
E  
Student Response F  
G  
Score: 2/2
 

4. Jump to next question.

   
Kuidas võib suunatud graafi tugevalt sidusate komponentide arv muutuda, kui graafist üks kaar kustutada?
  Student Response Feedback
võib väheneda rohkem kui ühe võrra  
Student Response võib jääda samaks  
Student Response võib suureneda rohkem kui ühe võrra  
võib väheneda ühe võrra  
Student Response võib suureneda ühe võrra  
Score: 2/2
 

5. Jump to next question.

   
Märkida kõik omaduste kombinatsioonid, mis on mingi suunatud graafi puhul võimalikud.
  Student Response Feedback
Student Response graaf ei ole tugevalt sidus, graaf on nõrgalt sidus, graafis leidub väljund  
graaf on tugevalt sidus, graaf ei ole nõrgalt sidus, graafis leidub väljund  
Student Response graaf on tugevalt sidus, graaf on nõrgalt sidus, graafis ei leidu väljundit  
Student Response graaf ei ole tugevalt sidus, graaf ei ole nõrgalt sidus, graafis ei leidu väljundit  
Score: 2/2
 

6. Jump to next question.

   
Rahvusvahelise konverentsi eel vaatas tõlkekeskus üle oma ressursid. Järgmise tabeli reas i ja veerus j on arv 1, kui on olemas tõlk, kes tõlgib keelest i keelde j, ja arv 0, kui tõlki, kes tõlgiks keelest i keelde j, ei ole.

010000000000
000000000010
000000000100
000000001000
000001000000
000000100001
001000000100
000100000000
001000010000
010000000000
100000000000
000010000000

Teha kindlaks, kas tõlkekeskus saab teha tõlkeid igast keelest igasse teise keelde ning leida vähim tõlkide arv, mis tuleb juurde muretseda, et iga kahe keele vahel tõlkimine võimalik oleks.

  Student Response
1. 
Score: 2/2
 

7. Jump to next question.

   
Kui suur on 12-tipulise turniiri tippude sisendastmete summa?
  Student Response
Answer: 66  
Score: 2/2
 

8. Jump to next question.

   
Teatava 10-tipulise turniiri esimese 9 tipu sisendastmed on 3, 4, 3, 5, 5, 6, 5, 4, 5. Milline on selle turniiri viimase tipu väljundaste?
  Student Response
Answer: 4  
Score: 2/2
 

9. Jump to next question.

   
Kui palju saab 9-tipulises turniiris maksimaalselt olla tippe, mille sisendaste on suurem kui väljundaste?
  Student Response
Answer: 5  
Score: 0/2
 

10. Jump to next question.

   
Teoreem tugevalt sidusas turniiris kõiki tippe läbiva suunatud lihttsükli leidumise kohta (õpikus lk 82, teoreem 6) tõestatakse tsükli pikendamisega kas a) ühe või b) kahe tipu võrra. Selline tippude lisamine on alati võimalik, kui n-tipulise turniiri puhul ei sisalda tsükkel rohkem kui n-2 tippu. Mis saab siis, kui tsükkel sisaldab n-1 tippu?
  Student Response Feedback
Et tegemist on turniiriga, siis on viimane lisatav tipp ühendatud tsükli kõigi tippudega, st selle tipu võime tsüklisse lisada kahe suvalise järjestikuse tipu vahele.  
See pole võimalik, sest tsüklit pikkusega n-1 vaadeldava konstrueerimise käigus tekkida ei saa; tsükli (kui ta pole lõpptsükkel) pikkus on alati ülimalt n-2.  
Kui on tekkinud tsükkel pikkusega n-1, mida täiendada ei saa, siis on võimalik samm tagasi võtta: kustutada viimasena lisatud tipp (tipud) ja seejärel lisada järelejäänud tipud õiges järjekorras.  
Student Response Et graaf on tugevalt sidus, siis saab viimasest lisatavast tipust liikuda tsükli kõigisse tippudesse ja vastupidi, st sel juhul on rakendatav juht a).  
Score: 2/2